Skip to main content
Log in

Field Scale Characterization of Geological Formations Using Percolation Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i.e., good sands) or non-conductive units (i.e., poor sands). The results are the master curves for the formation connectivity as well as the hydraulic conductivity and breakthrough time. The percolation approach is then validated against Burgan offshore reservoir dataset which reveal good matches when compared with the results obtained from computationally expensive conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler P.M., Berkowitz B.: Effective medium analysis of random lattices. Transp. Porous Med. 40, 145–151 (2000)

    Article  Google Scholar 

  • Andrade J.S., Buldyrev S.V., Dokholyan N.V., Havlin S., King P.R., Lee Y., Paul G., Stanley H.E.: Flow between two sites on a percolation cluster. Phys. Rev. E 62(6), 8270–8281 (2000)

    Article  Google Scholar 

  • Araujo, D., Moreira, A.A., Makse, H.A., Stanley, H.E., Andrade J.S.: Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations. Phys. Rev. E (2002). doi:10.1103/PhysRevE.66.046304

  • Baker, D.R., Paul, G., Sreenivasan, S., Stanley, H.E.: Continuum percolation threshold for interpenetrating squares and cubes. Phys. Rev. E (2002). doi:10.1103/PhysRevE.66.046136

  • Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. (2002). doi:10.1016/S0309-1708(02)00042-8

  • Berkowitz, B., Balberg, I.: Percolation approach to the problem of hydraulic conductivity in porous media. Transp. Porous Med. (1992). doi:10.1007/BF00611971

  • Celzard A., Mareche, J.F.: Non-universal conductivity critical exponents in anisotropic percolating media: a new interpretation. Phys. A (2003). doi:10.1016/S0378-4371(02)01367-5

  • de Marsily, G., Delay F., Gonsalves, J., Renard, P., Teles, V., Violette, S.: Dealing with spatial heterogeneity. Hydrogeol. J. (2005). doi:10.1007/s10040-004-0432-3

  • Denby, P., de Groot, H.I., Guit, F., Willet, A.: Integrated development and early production scheme for the Burgan reservoir in the Soroosh and Nowrooz fields offshore Iran. SPE (2001), doi:10.2118/68200-MS

  • Dokholyan N.V., Buldyrev S.V., Havlin S., King P.R., Lee Y., Stanley H.E.: Distribution of shortest paths in percolation. Phys. Rev. A 266, 55–61 (1999)

    Google Scholar 

  • Donato, D., Blunt, M.J.: Streamline based dual porosity simulation of reactive transport and flow in fractured reservoirs. Water Resour. Res. (2004). doi:10.1029/2003WR002772

  • Fokker P.A.: General anisotropic effective medium theory for the effective permeability of heterogeneous reservoirs. Transp. Porous Med. 44, 205–218 (2001)

    Article  Google Scholar 

  • Grassberger, P.: Conductivity exponent and backbone dimension in 2-d percolation. Phys. A (1999). doi:10.1016/S0378-4371(98)00435-X

  • Hoshen J., Berry M.W., Minser K.S.: Percolation and cluster structure parameters: The enhanced Hoshen-Kopelman algorithm. Phys. Rev. E 56(2), 1456–1460 (1997)

    Article  Google Scholar 

  • Hsieh, P.A., Shapiro, A.M., Barton, C.C., Haeni, F.P., Johnson, C.D., Martin, C.W., Paillet,, F.L., Winter, T.C., Wright D.L.: Methods of characterizing fluid movement and chemical transport in fractured rock. In: Chaney, J.T., Hepburn, J.C. (eds.) Field Trip Guidebook for North-Eastern United States, Geo. Soc. Am., Boston, Massa, pp. R1–R29 (1993)

  • Huang, W., Donato, D.G., Blunt, M.J.: Comparison of streamline based and grid based dual porosity simulation. J. Pet. Sci. Eng. (2004). doi:10.1016/j.petrol.2004.01.002

  • Huerlimann A.: DP Technical Report of Shell Company, Appendix Seven of Soroosh & Nowrooz Burgan Rock Properties. NISOC, Ahwaz (2004)

    Google Scholar 

  • Hunt, AG.: Some comments on the scale dependence of the hydraulic conductivity in the presence of nested heterogeneity. Adv. Water Resour. (2003). doi:10.1016/S0309-1708(02)00096-9

  • Hunt, A.G.: Continuum percolation theory for pressure–saturation characteristics of fractal soils: extension to non-equilibrium. Adv. Water Resour. (2004). doi:10.1016/j.advwatres.2004.01.002

  • Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porousmedia: comparison with examples from the Hanford site. Adv. Water Resour. (2002). doi:10.1016/S0309-1708(01)00057-4

  • Hunt, A.G., Idriss, B.: Percolation-based effective conductivity calculations for bimodal distributions of local conductances. Phil. Mag. (2009). doi:10.1080/14786430802660431

  • Karim, M.R., Krabbenhoft, K.: New renormalization schemes for conductivity upscaling in heterogeneous media. Transp. Porous Med. (2010). doi:10.1007/s11242-010-9585-9

  • King, P.R.: The connectivity and conductivity of overlapping sandbodies. Paper presented at 2nd international conference of north sea oil and gas reservoir, Graham & Trotman, London (1990)

  • King, P.R., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., Lee, Y., Paul, G., Stanley, H.E., Vandesteeg, N.: Predicting oil recovery using percolation theory. Pet. Geos. (2001). doi:10.1144/petgeo.7.S.S105

  • King P.R., Buldyrev S.V., Dokholyan N.V., Havlin S., Lopez E., Paul G., Stanley H.E.: Uncertainty in oil production predicted by percolation theory. Phys. A 306, 376–380 (2002)

    Article  Google Scholar 

  • King P.R., Buldyrev S.V., Dokholyan N.V., Havlin S., Lopez E., Paul G., Stanley H.E.: Using percolation theory to predict oil Field performance. Phys. A 314, 103–108 (2002)

    Article  Google Scholar 

  • Knudby C., Carrera J., Bumgardner J.D., Fogg G.E.: Binary upscaling-the role of connectivity and a new formula. Adv. Water Resour. 29(1), 590–604 (2006). doi:10.1016/j.advwatres.2005.07.002

    Article  Google Scholar 

  • Lee S.B., Torquato S.: Monte Carlo study of correlated continuum percolation: universality and percolation thresholds. Phys. Rev. A 41(10), 5338–5344 (1990)

    Article  Google Scholar 

  • Lee Y., Andrade J.S., Buldyrev S.V., Dokholyan N.V., Havlin S., King P.R., Paul G., Stanley H.E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E 60(3), 3245–3248 (1999)

    Article  Google Scholar 

  • Li, W., Jensen, J.L., Ayers, W.B., Hubbard, S.M., Heidari, M.R.: Comparison of interwell connectivity predictions using percolation, geometrical, and Monte Carlo models. J. Pet. Sci. Eng. (2009). doi:10.1016/j.petrol.2009.06.013

  • Lorenz C.D., Ziff R.M.: Precise determination of the critical percolation threshold for the three dimensional Swiss cheese model using a growth algorithm. J. Chem. Phys. 114(8), 3659–3661 (2001)

    Article  Google Scholar 

  • Manzocchi, T.: The connectivity of two-dimensional networks of spatially correlated fractures. Water Resour. Res. (2002). doi:10.1029/2000WR000180

  • Masihi, M., King, P.R., Nurafza, P.: Effect of anisotropy on finite-size scaling in percolation theory. Phys. Rev. E (2006). doi:10.1103/PhysRevE.74.042102

  • Masihi, M., King, P.R., Nurafza, P.: Fast estimation of connectivity in fractured reservoirs using Percolation theory. SPEJ (2007). doi:10.2118/94186-PA

  • Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Percolation of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E (2005). doi:10.1103/PhysRevE.72.036103

  • Mukhopadhyay, S., Sahimi, M.: Calculation of the effective permeabilities of field-scale porous media. Chem. Eng. Sci. (2000). doi:10.1016/S0009-2509(00)00098-1

  • Nurafza, P., King, P.R., Masihi, M.: Facies connectivity modeling: analysis and field study. Annual conference and exhibition SPE Europec/EAGE, Vienna, Austria (2006)

  • Ovdat, H., Berkowitz, B.: Pore-scale study of drainage displacement under combined capillary and gravity effects in index-matched porous media. Water Resour. Res. (2006). doi:10.1029/2005WR004553

  • Pesheva, N., Stefanov, I., Slavtchev, S.: Application of the invasion percolation model to water-gas flows in artificial soils with plants. Transp. Porous Med. (2010). doi:10.1007/s11242-009-9441-y

  • Prakash, S., Havlin, S., Schwartz, M., Stanley, H.E.: Structural and dynamical properties of long-range correlated percolation. Phys. Rev. A (1992). doi:10.1103/PhysRevA.46.R1724

  • Ronayne, M.J., Gorelick, S.M.: Effective permeability of porous media containing branching channel networks. Phys. Rev. E (2006). doi:10.1103/PhysRevE.73.026305

  • Sadeghnejad, S., Masihi, M., King, P.R., Shojaei, A., Pishvaei, M.: Effect of anisotropy on the scaling of connectivity and conductivity in continuum Percolation theory. Phys. Rev. E (2010). doi:10.1103/PhysRevE.81.061119

  • Sadeghnejad, S., Masihi, M., King, P.R., Shojaei, A., Pishvaei, M.: Reservoir conductivity evaluation using Percolation theory. Pet. Sci. Technol. (2011). doi:10.1080/10916460903502506

  • Sahimi, M., Mukhopadhyay, S.: Scaling properties of a percolation model with long-range correlations. Phys. Rev. E (1996). doi:10.1103/PhysRevE.54.3870

  • Schmittbuhl, J., Vilotte, J.P., Roux, S.: Percolation through self-affine surfaces. J. Phys. A (1993). doi:10.1088/0305-4470/26/22/014

  • Stauffer D., Aharony A.: Introduction to Percolation Theory. Taylor and Francis, London (1994)

    Google Scholar 

  • Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev. (2002). doi:10.1115/1.1483342

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Masihi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghnejad, S., Masihi, M., Shojaei, A. et al. Field Scale Characterization of Geological Formations Using Percolation Theory. Transp Porous Med 92, 357–372 (2012). https://doi.org/10.1007/s11242-011-9907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9907-6

Keywords

Navigation